GetLambdaFunctionRecommendations Ruby Example
require 'chilkat'
# This example requires the Chilkat API to have been previously unlocked.
# See Global Unlock Sample for sample code.
rest = Chilkat::CkRest.new()
authAws = Chilkat::CkAuthAws.new()
authAws.put_AccessKey("AWS_ACCESS_KEY")
authAws.put_SecretKey("AWS_SECRET_KEY")
# Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.)
authAws.put_Region("us-west-2")
authAws.put_ServiceName("compute-optimizer")
# SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date
rest.SetAuthAws(authAws)
# URL: https://compute-optimizer.us-west-2.amazonaws.com/
# Use the same region as specified above.
success = rest.Connect("compute-optimizer.us-west-2.amazonaws.com",443,true,true)
if (success != true)
print "ConnectFailReason: " + rest.get_ConnectFailReason().to_s() + "\n";
print rest.lastErrorText() + "\n";
exit
end
# The following code creates the JSON request body.
# The JSON created by this code is shown below.
# Use this online tool to generate code from sample JSON:
# Generate Code to Create JSON
json = Chilkat::CkJsonObject.new()
json.UpdateString("accountIds[0]","string")
json.UpdateString("filters[0].name","string")
json.UpdateString("filters[0].values[0]","string")
json.UpdateString("functionArns[0]","string")
json.UpdateInt("maxResults",123)
json.UpdateString("nextToken","string")
# The JSON request body created by the above code:
# {
# "accountIds": [
# "string"
# ],
# "filters": [
# {
# "name": "string",
# "values": [
# "string"
# ]
# }
# ],
# "functionArns": [
# "string"
# ],
# "maxResults": number,
# "nextToken": "string"
# }
rest.AddHeader("Content-Type","application/x-amz-json-1.0")
rest.AddHeader("X-Amz-Target","ComputeOptimizerService.GetLambdaFunctionRecommendations")
sbRequestBody = Chilkat::CkStringBuilder.new()
json.EmitSb(sbRequestBody)
sbResponseBody = Chilkat::CkStringBuilder.new()
success = rest.FullRequestSb("POST","/",sbRequestBody,sbResponseBody)
if (success != true)
print rest.lastErrorText() + "\n";
exit
end
respStatusCode = rest.get_ResponseStatusCode()
print "response status code = " + respStatusCode.to_s() + "\n";
if (respStatusCode != 200)
print "Response Header:" + "\n";
print rest.responseHeader() + "\n";
print "Response Body:" + "\n";
print sbResponseBody.getAsString() + "\n";
exit
end
jResp = Chilkat::CkJsonObject.new()
jResp.LoadSb(sbResponseBody)
# The following code parses the JSON response.
# A sample JSON response is shown below the sample code.
# Use this online tool to generate parsing code from sample JSON:
# Generate Parsing Code from JSON
nextToken = jResp.stringOf("nextToken")
i = 0
count_i = jResp.SizeOfArray("lambdaFunctionRecommendations")
while i < count_i
jResp.put_I(i)
accountId = jResp.stringOf("lambdaFunctionRecommendations[i].accountId")
currentMemorySize = jResp.IntOf("lambdaFunctionRecommendations[i].currentMemorySize")
currentPerformanceRisk = jResp.stringOf("lambdaFunctionRecommendations[i].currentPerformanceRisk")
finding = jResp.stringOf("lambdaFunctionRecommendations[i].finding")
functionArn = jResp.stringOf("lambdaFunctionRecommendations[i].functionArn")
functionVersion = jResp.stringOf("lambdaFunctionRecommendations[i].functionVersion")
lastRefreshTimestamp = jResp.IntOf("lambdaFunctionRecommendations[i].lastRefreshTimestamp")
lookbackPeriodInDays = jResp.IntOf("lambdaFunctionRecommendations[i].lookbackPeriodInDays")
numberOfInvocations = jResp.IntOf("lambdaFunctionRecommendations[i].numberOfInvocations")
j = 0
count_j = jResp.SizeOfArray("lambdaFunctionRecommendations[i].findingReasonCodes")
while j < count_j
jResp.put_J(j)
strVal = jResp.stringOf("lambdaFunctionRecommendations[i].findingReasonCodes[j]")
j = j + 1
end
j = 0
count_j = jResp.SizeOfArray("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions")
while j < count_j
jResp.put_J(j)
memorySize = jResp.IntOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].memorySize")
rank = jResp.IntOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].rank")
v_Currency = jResp.stringOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].savingsOpportunity.estimatedMonthlySavings.currency")
Value = jResp.IntOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].savingsOpportunity.estimatedMonthlySavings.value")
SavingsOpportunityPercentage = jResp.IntOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].savingsOpportunity.savingsOpportunityPercentage")
k = 0
count_k = jResp.SizeOfArray("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].projectedUtilizationMetrics")
while k < count_k
jResp.put_K(k)
name = jResp.stringOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].projectedUtilizationMetrics[k].name")
statistic = jResp.stringOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].projectedUtilizationMetrics[k].statistic")
value = jResp.IntOf("lambdaFunctionRecommendations[i].memorySizeRecommendationOptions[j].projectedUtilizationMetrics[k].value")
k = k + 1
end
j = j + 1
end
j = 0
count_j = jResp.SizeOfArray("lambdaFunctionRecommendations[i].utilizationMetrics")
while j < count_j
jResp.put_J(j)
name = jResp.stringOf("lambdaFunctionRecommendations[i].utilizationMetrics[j].name")
statistic = jResp.stringOf("lambdaFunctionRecommendations[i].utilizationMetrics[j].statistic")
value = jResp.IntOf("lambdaFunctionRecommendations[i].utilizationMetrics[j].value")
j = j + 1
end
i = i + 1
end
# A sample JSON response body parsed by the above code:
# {
# "lambdaFunctionRecommendations": [
# {
# "accountId": "string",
# "currentMemorySize": number,
# "currentPerformanceRisk": "string",
# "finding": "string",
# "findingReasonCodes": [
# "string"
# ],
# "functionArn": "string",
# "functionVersion": "string",
# "lastRefreshTimestamp": number,
# "lookbackPeriodInDays": number,
# "memorySizeRecommendationOptions": [
# {
# "memorySize": number,
# "projectedUtilizationMetrics": [
# {
# "name": "string",
# "statistic": "string",
# "value": number
# }
# ],
# "rank": number,
# "savingsOpportunity": {
# "estimatedMonthlySavings": {
# "currency": "string",
# "value": number
# },
# "savingsOpportunityPercentage": number
# }
# }
# ],
# "numberOfInvocations": number,
# "utilizationMetrics": [
# {
# "name": "string",
# "statistic": "string",
# "value": number
# }
# ]
# }
# ],
# "nextToken": "string"
# }