GetRecommendations Python Example
import sys
import chilkat
# This example requires the Chilkat API to have been previously unlocked.
# See Global Unlock Sample for sample code.
rest = chilkat.CkRest()
authAws = chilkat.CkAuthAws()
authAws.put_AccessKey("AWS_ACCESS_KEY")
authAws.put_SecretKey("AWS_SECRET_KEY")
# Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.)
authAws.put_Region("us-west-2")
authAws.put_ServiceName("wisdom")
# SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date
rest.SetAuthAws(authAws)
# URL: https://wisdom.us-west-2.amazonaws.com/
# Use the same region as specified above.
success = rest.Connect("wisdom.us-west-2.amazonaws.com",443,True,True)
if (success != True):
print("ConnectFailReason: " + str(rest.get_ConnectFailReason()))
print(rest.lastErrorText())
sys.exit()
rest.AddHeader("Content-Type","application/x-amz-json-1.1")
rest.AddHeader("X-Amz-Target","GetRecommendations")
sbResponseBody = chilkat.CkStringBuilder()
success = rest.FullRequestNoBodySb("GET","/assistants/{assistantId}/sessions/{sessionId}/recommendations",sbResponseBody)
if (success != True):
print(rest.lastErrorText())
sys.exit()
respStatusCode = rest.get_ResponseStatusCode()
print("response status code = " + str(respStatusCode))
if (respStatusCode != 200):
print("Response Header:")
print(rest.responseHeader())
print("Response Body:")
print(sbResponseBody.getAsString())
sys.exit()
jResp = chilkat.CkJsonObject()
jResp.LoadSb(sbResponseBody)
# The following code parses the JSON response.
# A sample JSON response is shown below the sample code.
# Use this online tool to generate parsing code from sample JSON:
# Generate Parsing Code from JSON
i = 0
count_i = jResp.SizeOfArray("recommendations")
while i < count_i :
jResp.put_I(i)
ContentArn = jResp.stringOf("recommendations[i].document.contentReference.contentArn")
ContentId = jResp.stringOf("recommendations[i].document.contentReference.contentId")
KnowledgeBaseArn = jResp.stringOf("recommendations[i].document.contentReference.knowledgeBaseArn")
KnowledgeBaseId = jResp.stringOf("recommendations[i].document.contentReference.knowledgeBaseId")
Text = jResp.stringOf("recommendations[i].document.excerpt.text")
TitleText = jResp.stringOf("recommendations[i].document.title.text")
recommendationId = jResp.stringOf("recommendations[i].recommendationId")
relevanceLevel = jResp.stringOf("recommendations[i].relevanceLevel")
relevanceScore = jResp.IntOf("recommendations[i].relevanceScore")
j = 0
count_j = jResp.SizeOfArray("recommendations[i].document.excerpt.highlights")
while j < count_j :
jResp.put_J(j)
beginOffsetInclusive = jResp.IntOf("recommendations[i].document.excerpt.highlights[j].beginOffsetInclusive")
endOffsetExclusive = jResp.IntOf("recommendations[i].document.excerpt.highlights[j].endOffsetExclusive")
j = j + 1
j = 0
count_j = jResp.SizeOfArray("recommendations[i].document.title.highlights")
while j < count_j :
jResp.put_J(j)
beginOffsetInclusive = jResp.IntOf("recommendations[i].document.title.highlights[j].beginOffsetInclusive")
endOffsetExclusive = jResp.IntOf("recommendations[i].document.title.highlights[j].endOffsetExclusive")
j = j + 1
i = i + 1
# A sample JSON response body parsed by the above code:
# {
# "recommendations": [
# {
# "document": {
# "contentReference": {
# "contentArn": "string",
# "contentId": "string",
# "knowledgeBaseArn": "string",
# "knowledgeBaseId": "string"
# },
# "excerpt": {
# "highlights": [
# {
# "beginOffsetInclusive": number,
# "endOffsetExclusive": number
# }
# ],
# "text": "string"
# },
# "title": {
# "highlights": [
# {
# "beginOffsetInclusive": number,
# "endOffsetExclusive": number
# }
# ],
# "text": "string"
# }
# },
# "recommendationId": "string",
# "relevanceLevel": "string",
# "relevanceScore": number
# }
# ]
# }