Chilkat Online Tools

GetEC2InstanceRecommendations Powershell Example

AWS Compute Optimizer

Add-Type -Path "C:\chilkat\ChilkatDotNet47-9.5.0-x64\ChilkatDotNet47.dll"

# This example requires the Chilkat API to have been previously unlocked.
# See Global Unlock Sample for sample code.

$rest = New-Object Chilkat.Rest

$authAws = New-Object Chilkat.AuthAws
$authAws.AccessKey = "AWS_ACCESS_KEY"
$authAws.SecretKey = "AWS_SECRET_KEY"

# Don't forget to change the region to your particular region. (Also make the same change in the call to Connect below.)
$authAws.Region = "us-west-2"
$authAws.ServiceName = "compute-optimizer"
# SetAuthAws causes Chilkat to automatically add the following headers: Authorization, X-Amz-Date
$rest.SetAuthAws($authAws)

# URL: https://compute-optimizer.us-west-2.amazonaws.com/
# Use the same region as specified above.
$success = $rest.Connect("compute-optimizer.us-west-2.amazonaws.com",443,$true,$true)
if ($success -ne $true) {
    $("ConnectFailReason: " + $rest.ConnectFailReason)
    $($rest.LastErrorText)
    exit
}

# The following code creates the JSON request body.
# The JSON created by this code is shown below.

# Use this online tool to generate code from sample JSON:
# Generate Code to Create JSON

$json = New-Object Chilkat.JsonObject
$json.UpdateString("accountIds[0]","string")
$json.UpdateString("filters[0].name","string")
$json.UpdateString("filters[0].values[0]","string")
$json.UpdateString("instanceArns[0]","string")
$json.UpdateInt("maxResults",123)
$json.UpdateString("nextToken","string")
$json.UpdateString("recommendationPreferences.cpuVendorArchitectures[0]","string")

# The JSON request body created by the above code:

# {
#   "accountIds": [
#     "string"
#   ],
#   "filters": [
#     {
#       "name": "string",
#       "values": [
#         "string"
#       ]
#     }
#   ],
#   "instanceArns": [
#     "string"
#   ],
#   "maxResults": number,
#   "nextToken": "string",
#   "recommendationPreferences": {
#     "cpuVendorArchitectures": [
#       "string"
#     ]
#   }
# }

$rest.AddHeader("Content-Type","application/x-amz-json-1.0")
$rest.AddHeader("X-Amz-Target","ComputeOptimizerService.GetEC2InstanceRecommendations")

$sbRequestBody = New-Object Chilkat.StringBuilder
$json.EmitSb($sbRequestBody)
$sbResponseBody = New-Object Chilkat.StringBuilder
$success = $rest.FullRequestSb("POST","/",$sbRequestBody,$sbResponseBody)
if ($success -ne $true) {
    $($rest.LastErrorText)
    exit
}

$respStatusCode = $rest.ResponseStatusCode
$("response status code = " + $respStatusCode)
if ($respStatusCode -ne 200) {
    $("Response Header:")
    $($rest.ResponseHeader)
    $("Response Body:")
    $($sbResponseBody.GetAsString())
    exit
}

$jResp = New-Object Chilkat.JsonObject
$jResp.LoadSb($sbResponseBody)

# The following code parses the JSON response.
# A sample JSON response is shown below the sample code.

# Use this online tool to generate parsing code from sample JSON:
# Generate Parsing Code from JSON

$nextToken = $jResp.StringOf("nextToken")
$i = 0
$count_i = $jResp.SizeOfArray("errors")
while ($i -lt $count_i) {
    $jResp.I = $i
    $code = $jResp.StringOf("errors[i].code")
    $identifier = $jResp.StringOf("errors[i].identifier")
    $message = $jResp.StringOf("errors[i].message")
    $i = $i + 1
}

$i = 0
$count_i = $jResp.SizeOfArray("instanceRecommendations")
while ($i -lt $count_i) {
    $jResp.I = $i
    $accountId = $jResp.StringOf("instanceRecommendations[i].accountId")
    $currentInstanceType = $jResp.StringOf("instanceRecommendations[i].currentInstanceType")
    $currentPerformanceRisk = $jResp.StringOf("instanceRecommendations[i].currentPerformanceRisk")
    $EnhancedInfrastructureMetrics = $jResp.StringOf("instanceRecommendations[i].effectiveRecommendationPreferences.enhancedInfrastructureMetrics")
    $InferredWorkloadTypes = $jResp.StringOf("instanceRecommendations[i].effectiveRecommendationPreferences.inferredWorkloadTypes")
    $finding = $jResp.StringOf("instanceRecommendations[i].finding")
    $instanceArn = $jResp.StringOf("instanceRecommendations[i].instanceArn")
    $instanceName = $jResp.StringOf("instanceRecommendations[i].instanceName")
    $lastRefreshTimestamp = $jResp.IntOf("instanceRecommendations[i].lastRefreshTimestamp")
    $lookBackPeriodInDays = $jResp.IntOf("instanceRecommendations[i].lookBackPeriodInDays")
    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].effectiveRecommendationPreferences.cpuVendorArchitectures")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $strVal = $jResp.StringOf("instanceRecommendations[i].effectiveRecommendationPreferences.cpuVendorArchitectures[j]")
        $j = $j + 1
    }

    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].findingReasonCodes")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $strVal = $jResp.StringOf("instanceRecommendations[i].findingReasonCodes[j]")
        $j = $j + 1
    }

    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].inferredWorkloadTypes")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $strVal = $jResp.StringOf("instanceRecommendations[i].inferredWorkloadTypes[j]")
        $j = $j + 1
    }

    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].recommendationOptions")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $instanceType = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].instanceType")
        $migrationEffort = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].migrationEffort")
        $performanceRisk = $jResp.IntOf("instanceRecommendations[i].recommendationOptions[j].performanceRisk")
        $rank = $jResp.IntOf("instanceRecommendations[i].recommendationOptions[j].rank")
        $v_Currency = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].savingsOpportunity.estimatedMonthlySavings.currency")
        $Value = $jResp.IntOf("instanceRecommendations[i].recommendationOptions[j].savingsOpportunity.estimatedMonthlySavings.value")
        $SavingsOpportunityPercentage = $jResp.IntOf("instanceRecommendations[i].recommendationOptions[j].savingsOpportunity.savingsOpportunityPercentage")
        $k = 0
        $count_k = $jResp.SizeOfArray("instanceRecommendations[i].recommendationOptions[j].platformDifferences")
        while ($k -lt $count_k) {
            $jResp.K = $k
            $strVal = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].platformDifferences[k]")
            $k = $k + 1
        }

        $k = 0
        $count_k = $jResp.SizeOfArray("instanceRecommendations[i].recommendationOptions[j].projectedUtilizationMetrics")
        while ($k -lt $count_k) {
            $jResp.K = $k
            $name = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].projectedUtilizationMetrics[k].name")
            $statistic = $jResp.StringOf("instanceRecommendations[i].recommendationOptions[j].projectedUtilizationMetrics[k].statistic")
            $value = $jResp.IntOf("instanceRecommendations[i].recommendationOptions[j].projectedUtilizationMetrics[k].value")
            $k = $k + 1
        }

        $j = $j + 1
    }

    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].recommendationSources")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $recommendationSourceArn = $jResp.StringOf("instanceRecommendations[i].recommendationSources[j].recommendationSourceArn")
        $recommendationSourceType = $jResp.StringOf("instanceRecommendations[i].recommendationSources[j].recommendationSourceType")
        $j = $j + 1
    }

    $j = 0
    $count_j = $jResp.SizeOfArray("instanceRecommendations[i].utilizationMetrics")
    while ($j -lt $count_j) {
        $jResp.J = $j
        $name = $jResp.StringOf("instanceRecommendations[i].utilizationMetrics[j].name")
        $statistic = $jResp.StringOf("instanceRecommendations[i].utilizationMetrics[j].statistic")
        $value = $jResp.IntOf("instanceRecommendations[i].utilizationMetrics[j].value")
        $j = $j + 1
    }

    $i = $i + 1
}

# A sample JSON response body parsed by the above code:

# {
#   "errors": [
#     {
#       "code": "string",
#       "identifier": "string",
#       "message": "string"
#     }
#   ],
#   "instanceRecommendations": [
#     {
#       "accountId": "string",
#       "currentInstanceType": "string",
#       "currentPerformanceRisk": "string",
#       "effectiveRecommendationPreferences": {
#         "cpuVendorArchitectures": [
#           "string"
#         ],
#         "enhancedInfrastructureMetrics": "string",
#         "inferredWorkloadTypes": "string"
#       },
#       "finding": "string",
#       "findingReasonCodes": [
#         "string"
#       ],
#       "inferredWorkloadTypes": [
#         "string"
#       ],
#       "instanceArn": "string",
#       "instanceName": "string",
#       "lastRefreshTimestamp": number,
#       "lookBackPeriodInDays": number,
#       "recommendationOptions": [
#         {
#           "instanceType": "string",
#           "migrationEffort": "string",
#           "performanceRisk": number,
#           "platformDifferences": [
#             "string"
#           ],
#           "projectedUtilizationMetrics": [
#             {
#               "name": "string",
#               "statistic": "string",
#               "value": number
#             }
#           ],
#           "rank": number,
#           "savingsOpportunity": {
#             "estimatedMonthlySavings": {
#               "currency": "string",
#               "value": number
#             },
#             "savingsOpportunityPercentage": number
#           }
#         }
#       ],
#       "recommendationSources": [
#         {
#           "recommendationSourceArn": "string",
#           "recommendationSourceType": "string"
#         }
#       ],
#       "utilizationMetrics": [
#         {
#           "name": "string",
#           "statistic": "string",
#           "value": number
#         }
#       ]
#     }
#   ],
#   "nextToken": "string"
# }